Calibration of the Shower Maximum Detector in the Barrel EMC at STAR

- → By Kara Farnsworth
 - →University of Arizona
- → Mentors: Saskia Mioduszewski and Martin Codrington
 - → Texas A&M Cyclotron Institute

Quark - Gluon Plasma (QGP)

- Form of matter believed to have existed in early universe (hadronized 10μs after Big Bang)
- → Quarks and gluons deconfined
 - → Unlike hadronic matter quark-antiquark pairs (mesons) or three quarks (baryons)
- → Believed to be recreated in high energy, heavy ion collisions

Jets as Probes

- To understand this dense medium need probe
- **→** Jet
 - ★ A parton (quark or gluon) fragments into a cone of hadrons (= a "jet")
 - → Produced from hard scattering processes (between partons)
 - → Hard scattering occurs early in heavy-ion collision – scattered parton experiences evolving medium

γ- Jet Probe

- → Jet produced back to back with "direct" photon
- → QGP interacts primarily via strong force
 - → Photon only interacts via EM force
- → Direct photon carries initial energy not modified by passing through medium
 - → "Calibrated" probe
- \rightarrow However, significant number of background photons (e.g. $\pi^0 \rightarrow \gamma\gamma$)

Relativistic Heavy Ion Collider (RHIC)

- → Two rings beams traveling in opposite directions
- → Can produce Au+Au collisions at 200 GeV
 - → Ideal for creating QGP
- → Six interaction points
- → Four experiments initially
 - → PHOBOS (inactive)
 - → BRAHMS (inactive)
 - **→** PHENIX
 - **→** STAR

Solenoid Tracker at RHIC (STAR)

- **→** Goals
 - → Look for signatures of the QGP
 - → Study properties of matter created in these heavy-ion collisions

Barrel Electromagnetic Calorimeter (BEMC)

- → Used by STAR for energy detection and triggering
- → Large acceptance
- + Coverage: $-1 < \eta < 1$, $\phi = 2\pi$
- ♦ Contains 4800 towers, each with a coverage of $\Delta \phi = 0.05$ rad by $\Delta \eta = 0.05$

Tower and Shower Maximum Detector

(SMD)

- ★ Contains alternating layers of lead and plastic scintillator
 - → 20 layers of 5 mm thick lead (Pb)
 - → 21 layers of 5 mm thick scintillator
 - ★ Wire chamber with cathode-strip readout = SMD
- → Depth ~ 20 X_0 at η = 0

- ♦ Shower e^{\pm}/γ interacting with Pb, results in cascade of secondary e^{\pm}/γ
- ◆ Shower maximum detector at 5 X₀ (after shower has reached its maximum)
 - → Good spatial resolution
 - → Perpendicular strips for determining position
 - ▲ 10 000 in m and 10 000 in d

Calibration of SMD

- → Main source of background photons = π^0 decays
 - → Two photons with narrow opening angle

- → Hard to resolve differences in energy distributions
- **→**Calibrate detector for better discrimination ability
 - ◆Calculate gains (amplification of signal from light to energy)
 - **→** Equalize gains
 - ◆Save calibration constants to database for future runs

2D Histograms - Pedestal Subtraction

- → 3 million minimum biased Au+Au
 200 GeV events
- Detector ID number and ADC value saved
- → Data zero suppressed use pedestal run information
- Mean and five time the RMS of the pedestal subtracted
- → Mean value of strips not equal

Quality Assurance

- 2D histograms projected by strip
- ★ Each strip given a status indicator
 - → 0 Dead channel (< 5 entries)</p>
 - → 1 Good channel
 - → 3 Cold channel (number of entries < 1/5 of the average number of entries
 - → 4 Hot channel (number of entries > 5 times the average number of entries)
- ★ Each strip then fit with exponential function from ADC values 1 to 30

Gains

+ The |slope| vs. the strip number for η is shown below

→ The gain of each strip is the variation of its slope with respect to a constant

Calibration Constants

◆ These multiplicative constants saved to database- to be applied in future

Detector relatively calibrated

- **→** Future
 - → Use simulation to complete absolute calibration
 - ★ Absolutely calibrated constants find energy from raw ADC value

Acknowledgements

- → Saskia Mioduszewski
- → Martin Codrington
- **→** Sherry Yennello
- → Larry May
- → Texas A&M Cyclotron Institute
- + NSF

